Hvordan installere et Tesla C1060


2 innlegg i emnet

Skrevet

Ok, så på jobb så fikk jeg et Tesla C1060 på gøy fordi kunden ikke ville ha den.

så lurer jeg på hvordan jeg skal installere denne i maskinen min? :wacko:
det er ingen video-utganger på kortet, men SLI tilkobling er tilgjengelig

Kan jeg sette den i SLI med et GTX 760 kort, eller?

Jeg skal ikke ha kortet fast i PC-en, men tenkte det hadde vært kult å prøve!

Finner noe på google, men er litt uklart :) noen tips? så kan jeg poste noen benchmarks om hvordan det går :ph34r:


Venter spent på svar! :rolleyes:

0

Del dette innlegget


Lenke til innlegg
Del på andre sider

Skrevet (endret)

Om Tesla:

These cards are designed for single and paralleled computation only. They are meant to calculate at incredibly high speeds handling lots of information of data. Don't use these for gaming as there are no display ports anyways! What you really want to be looking at within these cards' specifications is the amount of memory bandwidth, peak performance and the amount of "CUDA" cores (processor cores).

Tesla som main CPU?

the Tesla does not take over as your main processor. It is designed solely as a high end math engine using nVidia's GPU cores for specialized applications which requires unique coding to utilize the power.

SLI

Tesla products do not support SLI. However, multiple Tesla products will allow for greater overall performance provided the applicattion is multi-GPU aware.

These cards do not need an SLI bridge between them. As long as the are plugged into a PCI Express 2.0 lane they should run fine.

Tesla + GeForce

Q: I'm having trouble getting a Tesla C2050 to coexist with a GeForce video card. When they are both installed, CUDA enabled software bypasses the Tesla and uses the GeForce card's GPUs. The only workaround I've found is to use an ATI Radeon card for video and the Tesla works fine for computation.

I'd love to find a way for the Tesla to work WITH a GeForce card and have them BOTH crunch numbers for me. Any ideas?

A: So this is sort of a tricky solution that involves the code of the program your using. Run Device Query from your SDK. It should come up with some device ID's such as Tesla (0). The Tesla Card needs to be changed from it's default state to Device ID (1). The only rough part of this is that is has to be done by programming it into the code of the software that you are using. Usually there is some documentation on the CUDA program you are using and will sometimes have how to change device ID's. In any case, using multiple devices typically has to be enabled by re-working some of the code.

Kilder:

http://www.tomshardware.co.uk/forum/304434-33-questions-nvidia-tesla-cards-first

http://nvidia.custhelp.com/app/answers/detail/a_id/2145/~/can-i-sli-two-tesla-c870-cards%3F

http://setiathome.berkeley.edu/forum_thread.php?id=52632

Hvis noen har falt av lasset, eller bare trenger et raskt lynkurs i forskjellen på en CPU og GPU er, anbefaler jeg denne siden (tar 1.min å lese).

http://www.nvidia.com/object/what-is-gpu-computing.html

Har du (eller dere andre) andre spørsmål om Nvidia Tesla, er det bare å rope ut, så skal jeg (og resten av forumet) svare så godt vi kan. :)

Endret av jpg
0

Del dette innlegget


Lenke til innlegg
Del på andre sider

Opprett en konto eller logg inn for å kommentere

Du må være et medlem for å kunne skrive en kommentar

Opprett konto

Det er enkelt å melde seg inn for å starte en ny konto!


Start en konto

Logg inn

Har du allerede en konto? Logg inn her.


Logg inn nå

  • Hvem er aktive   0 medlemmer

    Ingen innloggede medlemmer aktive